US ERA ARCHIVE DOCUMENT

Nanostructured Materials for Environmental Remediation of Chlorinated Compounds EPA – GR832374

PI: Yunfeng Lu

Co-PI: Vijay T. John

Department of Chemical and Biomolecular Engineering

Tulane University

Background:

The use of zerovalent iron for in-situ remediation of chlorinated compounds. Can nanoscale iron be used more effectively by minimizing aggregation, and Improving mobility during in-situ remediation?

Our **objective** is to design mesoporous supports for nanoscale iron with controlled functionalities to allow catalyst partitioning to the organic/aqueous/interfacial regions.

We use the principles of surfactant **self-assembly** to create structured mesoporous supports.

Hexagonal

Cubic

Preliminary Results: Aerosolization with Iron Precursors and generation of hollow silica structures

Continuing work:

- Generating iron containing silica nanoparticles.
- Functionalizing silicas with hydrophobic/hydrophilic ligands to control zerovalent iron mobility and partitioning characteristics.
- Evaluating activity towards TCE breakdown using static experiments.
- Developing a novel microcapillary video-microscopy based technique to visualize contaminant droplet and catalyst particle characteristics during in-situ remediation.
- Column experiments to measure the efficacy of contaminant breakdown during In-situ remediation.